Metamath Proof Explorer


Theorem sadcom

Description: The adder sequence function is commutative. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion sadcom A0B0AsaddB=BsaddA

Proof

Step Hyp Ref Expression
1 hadcoma haddkAkBseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1khaddkBkAseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k
2 1 a1i A0B0haddkAkBseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1khaddkBkAseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k
3 2 rabbidv A0B0k0|haddkAkBseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k=k0|haddkBkAseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k
4 simpl A0B0A0
5 simpr A0B0B0
6 eqid seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
7 4 5 6 sadfval A0B0AsaddB=k0|haddkAkBseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k
8 cadcoma caddmAmBccaddmBmAc
9 8 a1i c2𝑜m0caddmAmBccaddmBmAc
10 9 ifbid c2𝑜m0ifcaddmAmBc1𝑜=ifcaddmBmAc1𝑜
11 10 mpoeq3ia c2𝑜,m0ifcaddmAmBc1𝑜=c2𝑜,m0ifcaddmBmAc1𝑜
12 seqeq2 c2𝑜,m0ifcaddmAmBc1𝑜=c2𝑜,m0ifcaddmBmAc1𝑜seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1=seq0c2𝑜,m0ifcaddmBmAc1𝑜n0ifn=0n1
13 11 12 ax-mp seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1=seq0c2𝑜,m0ifcaddmBmAc1𝑜n0ifn=0n1
14 5 4 13 sadfval A0B0BsaddA=k0|haddkBkAseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1k
15 3 7 14 3eqtr4d A0B0AsaddB=BsaddA