| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sadval.a |
|
| 2 |
|
sadval.b |
|
| 3 |
|
sadval.c |
|
| 4 |
|
nn0ex |
|
| 5 |
4
|
elpw2 |
|
| 6 |
1 5
|
sylibr |
|
| 7 |
4
|
elpw2 |
|
| 8 |
2 7
|
sylibr |
|
| 9 |
|
simpl |
|
| 10 |
9
|
eleq2d |
|
| 11 |
|
simpr |
|
| 12 |
11
|
eleq2d |
|
| 13 |
|
simp1l |
|
| 14 |
13
|
eleq2d |
|
| 15 |
|
simp1r |
|
| 16 |
15
|
eleq2d |
|
| 17 |
|
biidd |
|
| 18 |
14 16 17
|
cadbi123d |
|
| 19 |
18
|
ifbid |
|
| 20 |
19
|
mpoeq3dva |
|
| 21 |
20
|
seqeq2d |
|
| 22 |
21 3
|
eqtr4di |
|
| 23 |
22
|
fveq1d |
|
| 24 |
23
|
eleq2d |
|
| 25 |
10 12 24
|
hadbi123d |
|
| 26 |
25
|
rabbidv |
|
| 27 |
|
df-sad |
|
| 28 |
4
|
rabex |
|
| 29 |
26 27 28
|
ovmpoa |
|
| 30 |
6 8 29
|
syl2anc |
|