Metamath Proof Explorer


Theorem sadcf

Description: The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Hypotheses sadval.a φA0
sadval.b φB0
sadval.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
Assertion sadcf φC:02𝑜

Proof

Step Hyp Ref Expression
1 sadval.a φA0
2 sadval.b φB0
3 sadval.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
4 0nn0 00
5 iftrue n=0ifn=0n1=
6 eqid n0ifn=0n1=n0ifn=0n1
7 0ex V
8 5 6 7 fvmpt 00n0ifn=0n10=
9 4 8 ax-mp n0ifn=0n10=
10 7 prid1 1𝑜
11 df2o3 2𝑜=1𝑜
12 10 11 eleqtrri 2𝑜
13 9 12 eqeltri n0ifn=0n102𝑜
14 13 a1i φn0ifn=0n102𝑜
15 df-ov xc2𝑜,m0ifcaddmAmBc1𝑜y=c2𝑜,m0ifcaddmAmBc1𝑜xy
16 1oex 1𝑜V
17 16 prid2 1𝑜1𝑜
18 17 11 eleqtrri 1𝑜2𝑜
19 18 12 ifcli ifcaddmAmBc1𝑜2𝑜
20 19 rgen2w c2𝑜m0ifcaddmAmBc1𝑜2𝑜
21 eqid c2𝑜,m0ifcaddmAmBc1𝑜=c2𝑜,m0ifcaddmAmBc1𝑜
22 21 fmpo c2𝑜m0ifcaddmAmBc1𝑜2𝑜c2𝑜,m0ifcaddmAmBc1𝑜:2𝑜×02𝑜
23 20 22 mpbi c2𝑜,m0ifcaddmAmBc1𝑜:2𝑜×02𝑜
24 23 12 f0cli c2𝑜,m0ifcaddmAmBc1𝑜xy2𝑜
25 15 24 eqeltri xc2𝑜,m0ifcaddmAmBc1𝑜y2𝑜
26 25 a1i φx2𝑜yVxc2𝑜,m0ifcaddmAmBc1𝑜y2𝑜
27 nn0uz 0=0
28 0zd φ0
29 fvexd φx0+1n0ifn=0n1xV
30 14 26 27 28 29 seqf2 φseq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1:02𝑜
31 3 feq1i C:02𝑜seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1:02𝑜
32 30 31 sylibr φC:02𝑜