Metamath Proof Explorer


Theorem sadc0

Description: The initial element of the carry sequence is F. . (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Hypotheses sadval.a φA0
sadval.b φB0
sadval.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
Assertion sadc0 φ¬C0

Proof

Step Hyp Ref Expression
1 sadval.a φA0
2 sadval.b φB0
3 sadval.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
4 noel ¬
5 3 fveq1i C0=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n10
6 0z 0
7 seq1 0seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n10=n0ifn=0n10
8 6 7 ax-mp seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n10=n0ifn=0n10
9 0nn0 00
10 iftrue n=0ifn=0n1=
11 eqid n0ifn=0n1=n0ifn=0n1
12 0ex V
13 10 11 12 fvmpt 00n0ifn=0n10=
14 9 13 ax-mp n0ifn=0n10=
15 5 8 14 3eqtri C0=
16 15 eleq2i C0
17 4 16 mtbir ¬C0
18 17 a1i φ¬C0