Metamath Proof Explorer


Theorem sadc0

Description: The initial element of the carry sequence is F. . (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Hypotheses sadval.a φ A 0
sadval.b φ B 0
sadval.c C = seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1
Assertion sadc0 φ ¬ C 0

Proof

Step Hyp Ref Expression
1 sadval.a φ A 0
2 sadval.b φ B 0
3 sadval.c C = seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1
4 noel ¬
5 3 fveq1i C 0 = seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1 0
6 0z 0
7 seq1 0 seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1 0 = n 0 if n = 0 n 1 0
8 6 7 ax-mp seq 0 c 2 𝑜 , m 0 if cadd m A m B c 1 𝑜 n 0 if n = 0 n 1 0 = n 0 if n = 0 n 1 0
9 0nn0 0 0
10 iftrue n = 0 if n = 0 n 1 =
11 eqid n 0 if n = 0 n 1 = n 0 if n = 0 n 1
12 0ex V
13 10 11 12 fvmpt 0 0 n 0 if n = 0 n 1 0 =
14 9 13 ax-mp n 0 if n = 0 n 1 0 =
15 5 8 14 3eqtri C 0 =
16 15 eleq2i C 0
17 4 16 mtbir ¬ C 0
18 17 a1i φ ¬ C 0