Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
|
2 |
|
sadval.b |
|
3 |
|
sadval.c |
|
4 |
|
sadcp1.n |
|
5 |
|
nn0uz |
|
6 |
4 5
|
eleqtrdi |
|
7 |
|
seqp1 |
|
8 |
6 7
|
syl |
|
9 |
3
|
fveq1i |
|
10 |
3
|
fveq1i |
|
11 |
10
|
oveq1i |
|
12 |
8 9 11
|
3eqtr4g |
|
13 |
|
peano2nn0 |
|
14 |
|
eqeq1 |
|
15 |
|
oveq1 |
|
16 |
14 15
|
ifbieq2d |
|
17 |
|
eqid |
|
18 |
|
0ex |
|
19 |
|
ovex |
|
20 |
18 19
|
ifex |
|
21 |
16 17 20
|
fvmpt |
|
22 |
4 13 21
|
3syl |
|
23 |
|
nn0p1nn |
|
24 |
4 23
|
syl |
|
25 |
24
|
nnne0d |
|
26 |
|
ifnefalse |
|
27 |
25 26
|
syl |
|
28 |
4
|
nn0cnd |
|
29 |
|
1cnd |
|
30 |
28 29
|
pncand |
|
31 |
22 27 30
|
3eqtrd |
|
32 |
31
|
oveq2d |
|
33 |
1 2 3
|
sadcf |
|
34 |
33 4
|
ffvelrnd |
|
35 |
|
simpr |
|
36 |
35
|
eleq1d |
|
37 |
35
|
eleq1d |
|
38 |
|
simpl |
|
39 |
38
|
eleq2d |
|
40 |
36 37 39
|
cadbi123d |
|
41 |
40
|
ifbid |
|
42 |
|
biidd |
|
43 |
|
biidd |
|
44 |
|
eleq2w |
|
45 |
42 43 44
|
cadbi123d |
|
46 |
45
|
ifbid |
|
47 |
|
eleq1w |
|
48 |
|
eleq1w |
|
49 |
|
biidd |
|
50 |
47 48 49
|
cadbi123d |
|
51 |
50
|
ifbid |
|
52 |
46 51
|
cbvmpov |
|
53 |
|
1oex |
|
54 |
53 18
|
ifex |
|
55 |
41 52 54
|
ovmpoa |
|
56 |
34 4 55
|
syl2anc |
|
57 |
12 32 56
|
3eqtrd |
|
58 |
57
|
eleq2d |
|
59 |
|
noel |
|
60 |
|
iffalse |
|
61 |
60
|
eleq2d |
|
62 |
59 61
|
mtbiri |
|
63 |
62
|
con4i |
|
64 |
|
0lt1o |
|
65 |
|
iftrue |
|
66 |
64 65
|
eleqtrrid |
|
67 |
63 66
|
impbii |
|
68 |
58 67
|
bitrdi |
|