Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
sadval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
sadval.c |
⊢ 𝐶 = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
|
iftrue |
⊢ ( 𝑛 = 0 → if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) = ∅ ) |
6 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
5 6 7
|
fvmpt |
⊢ ( 0 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ 0 ) = ∅ ) |
9 |
4 8
|
ax-mp |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ 0 ) = ∅ |
10 |
7
|
prid1 |
⊢ ∅ ∈ { ∅ , 1o } |
11 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
12 |
10 11
|
eleqtrri |
⊢ ∅ ∈ 2o |
13 |
9 12
|
eqeltri |
⊢ ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ 0 ) ∈ 2o |
14 |
13
|
a1i |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ 0 ) ∈ 2o ) |
15 |
|
df-ov |
⊢ ( 𝑥 ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) 𝑦 ) = ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) ‘ 〈 𝑥 , 𝑦 〉 ) |
16 |
|
1oex |
⊢ 1o ∈ V |
17 |
16
|
prid2 |
⊢ 1o ∈ { ∅ , 1o } |
18 |
17 11
|
eleqtrri |
⊢ 1o ∈ 2o |
19 |
18 12
|
ifcli |
⊢ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ∈ 2o |
20 |
19
|
rgen2w |
⊢ ∀ 𝑐 ∈ 2o ∀ 𝑚 ∈ ℕ0 if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ∈ 2o |
21 |
|
eqid |
⊢ ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) = ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) |
22 |
21
|
fmpo |
⊢ ( ∀ 𝑐 ∈ 2o ∀ 𝑚 ∈ ℕ0 if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ∈ 2o ↔ ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) : ( 2o × ℕ0 ) ⟶ 2o ) |
23 |
20 22
|
mpbi |
⊢ ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) : ( 2o × ℕ0 ) ⟶ 2o |
24 |
23 12
|
f0cli |
⊢ ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 2o |
25 |
15 24
|
eqeltri |
⊢ ( 𝑥 ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) 𝑦 ) ∈ 2o |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 2o ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) 𝑦 ) ∈ 2o ) |
27 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
28 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
29 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ‘ 𝑥 ) ∈ V ) |
30 |
14 26 27 28 29
|
seqf2 |
⊢ ( 𝜑 → seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) : ℕ0 ⟶ 2o ) |
31 |
3
|
feq1i |
⊢ ( 𝐶 : ℕ0 ⟶ 2o ↔ seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) : ℕ0 ⟶ 2o ) |
32 |
30 31
|
sylibr |
⊢ ( 𝜑 → 𝐶 : ℕ0 ⟶ 2o ) |