Step |
Hyp |
Ref |
Expression |
1 |
|
sadval.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ0 ) |
2 |
|
sadval.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ0 ) |
3 |
|
sadval.c |
⊢ 𝐶 = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) |
4 |
|
nn0ex |
⊢ ℕ0 ∈ V |
5 |
4
|
elpw2 |
⊢ ( 𝐴 ∈ 𝒫 ℕ0 ↔ 𝐴 ⊆ ℕ0 ) |
6 |
1 5
|
sylibr |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ℕ0 ) |
7 |
4
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 ℕ0 ↔ 𝐵 ⊆ ℕ0 ) |
8 |
2 7
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ℕ0 ) |
9 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
10 |
9
|
eleq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑘 ∈ 𝑥 ↔ 𝑘 ∈ 𝐴 ) ) |
11 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
12 |
11
|
eleq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑘 ∈ 𝑦 ↔ 𝑘 ∈ 𝐵 ) ) |
13 |
|
simp1l |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → 𝑥 = 𝐴 ) |
14 |
13
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ∈ 𝑥 ↔ 𝑚 ∈ 𝐴 ) ) |
15 |
|
simp1r |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → 𝑦 = 𝐵 ) |
16 |
15
|
eleq2d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 ∈ 𝑦 ↔ 𝑚 ∈ 𝐵 ) ) |
17 |
|
biidd |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → ( ∅ ∈ 𝑐 ↔ ∅ ∈ 𝑐 ) ) |
18 |
14 16 17
|
cadbi123d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) ↔ cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) ) ) |
19 |
18
|
ifbid |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑐 ∈ 2o ∧ 𝑚 ∈ ℕ0 ) → if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) = if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) |
20 |
19
|
mpoeq3dva |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) = ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) ) |
21 |
20
|
seqeq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝐴 , 𝑚 ∈ 𝐵 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ) |
22 |
21 3
|
eqtr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) = 𝐶 ) |
23 |
22
|
fveq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) |
24 |
23
|
eleq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ↔ ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) |
25 |
10 12 24
|
hadbi123d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( hadd ( 𝑘 ∈ 𝑥 , 𝑘 ∈ 𝑦 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) ↔ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) ) ) |
26 |
25
|
rabbidv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝑥 , 𝑘 ∈ 𝑦 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) } = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) } ) |
27 |
|
df-sad |
⊢ sadd = ( 𝑥 ∈ 𝒫 ℕ0 , 𝑦 ∈ 𝒫 ℕ0 ↦ { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝑥 , 𝑘 ∈ 𝑦 , ∅ ∈ ( seq 0 ( ( 𝑐 ∈ 2o , 𝑚 ∈ ℕ0 ↦ if ( cadd ( 𝑚 ∈ 𝑥 , 𝑚 ∈ 𝑦 , ∅ ∈ 𝑐 ) , 1o , ∅ ) ) , ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ∅ , ( 𝑛 − 1 ) ) ) ) ‘ 𝑘 ) ) } ) |
28 |
4
|
rabex |
⊢ { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) } ∈ V |
29 |
26 27 28
|
ovmpoa |
⊢ ( ( 𝐴 ∈ 𝒫 ℕ0 ∧ 𝐵 ∈ 𝒫 ℕ0 ) → ( 𝐴 sadd 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) } ) |
30 |
6 8 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 sadd 𝐵 ) = { 𝑘 ∈ ℕ0 ∣ hadd ( 𝑘 ∈ 𝐴 , 𝑘 ∈ 𝐵 , ∅ ∈ ( 𝐶 ‘ 𝑘 ) ) } ) |