Metamath Proof Explorer


Theorem satf0sucom

Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation at a successor of _om . (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion satf0sucom NsucωSatN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN

Proof

Step Hyp Ref Expression
1 satf0 Sat=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucω
2 1 fveq1i SatN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucωN
3 fvres NsucωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucωN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
4 2 3 eqtrid NsucωSatN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN