Metamath Proof Explorer


Theorem sb2imi

Description: Distribute substitution over implication. Compare al2imi . (Contributed by Steven Nguyen, 13-Aug-2023)

Ref Expression
Hypothesis sb2imi.1 φ ψ χ
Assertion sb2imi t x φ t x ψ t x χ

Proof

Step Hyp Ref Expression
1 sb2imi.1 φ ψ χ
2 1 sbimi t x φ t x ψ χ
3 sbi1 t x ψ χ t x ψ t x χ
4 2 3 syl t x φ t x ψ t x χ