Metamath Proof Explorer


Theorem sb4b

Description: Simplified definition of substitution when variables are distinct. Version of sb6 with a distinctor antecedent. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 27-May-1997) Revise df-sb . (Revised by Wolf Lammen, 21-Feb-2024) (New usage is discouraged.)

Ref Expression
Assertion sb4b ¬xx=ttxφxx=tφ

Proof

Step Hyp Ref Expression
1 nfna1 x¬xx=t
2 nfeqf2 ¬xx=txy=t
3 1 2 nfan1 x¬xx=ty=t
4 equequ2 y=tx=yx=t
5 4 imbi1d y=tx=yφx=tφ
6 5 adantl ¬xx=ty=tx=yφx=tφ
7 3 6 albid ¬xx=ty=txx=yφxx=tφ
8 7 pm5.74da ¬xx=ty=txx=yφy=txx=tφ
9 8 albidv ¬xx=tyy=txx=yφyy=txx=tφ
10 df-sb txφyy=txx=yφ
11 ax6ev yy=t
12 11 a1bi xx=tφyy=txx=tφ
13 19.23v yy=txx=tφyy=txx=tφ
14 12 13 bitr4i xx=tφyy=txx=tφ
15 9 10 14 3bitr4g ¬xx=ttxφxx=tφ