Metamath Proof Explorer


Theorem sbc3or

Description: sbcor with a 3-disjuncts. This proof is sbc3orgVD automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011) (Revised by NM, 24-Aug-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbc3or [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ

Proof

Step Hyp Ref Expression
1 sbcor [˙A/x]˙φψχ[˙A/x]˙φψ[˙A/x]˙χ
2 df-3or φψχφψχ
3 2 bicomi φψχφψχ
4 3 sbcbii [˙A/x]˙φψχ[˙A/x]˙φψχ
5 sbcor [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
6 5 orbi1i [˙A/x]˙φψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
7 1 4 6 3bitr3i [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
8 df-3or [˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
9 7 8 bitr4i [˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ