| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcor |
|- ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) |
| 2 |
|
df-3or |
|- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
| 3 |
2
|
bicomi |
|- ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) |
| 4 |
3
|
sbcbii |
|- ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) |
| 5 |
|
sbcor |
|- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |
| 6 |
5
|
orbi1i |
|- ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
| 7 |
1 4 6
|
3bitr3i |
|- ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
| 8 |
|
df-3or |
|- ( ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
| 9 |
7 8
|
bitr4i |
|- ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) |