| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 2 |
|
df-3or |
⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
| 3 |
2
|
bicomi |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 4 |
3
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 5 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| 6 |
5
|
orbi1i |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 7 |
1 4 6
|
3bitr3i |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 8 |
|
df-3or |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 9 |
7 8
|
bitr4i |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |