Metamath Proof Explorer


Theorem sbcbr

Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018)

Ref Expression
Assertion sbcbr [˙A/x]˙BRCBA/xRC

Proof

Step Hyp Ref Expression
1 sbcbr123 [˙A/x]˙BRCA/xBA/xRA/xC
2 csbconstg AVA/xB=B
3 csbconstg AVA/xC=C
4 2 3 breq12d AVA/xBA/xRA/xCBA/xRC
5 br0 ¬A/xBA/xC
6 csbprc ¬AVA/xR=
7 6 breqd ¬AVA/xBA/xRA/xCA/xBA/xC
8 5 7 mtbiri ¬AV¬A/xBA/xRA/xC
9 br0 ¬BC
10 6 breqd ¬AVBA/xRCBC
11 9 10 mtbiri ¬AV¬BA/xRC
12 8 11 2falsed ¬AVA/xBA/xRA/xCBA/xRC
13 4 12 pm2.61i A/xBA/xRA/xCBA/xRC
14 1 13 bitri [˙A/x]˙BRCBA/xRC