Metamath Proof Explorer


Theorem sbccomieg

Description: Commute two explicit substitutions, using an implicit substitution to rewrite the exiting substitution. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis sbccomieg.1 a = A B = C
Assertion sbccomieg [˙A / a]˙ [˙B / b]˙ φ [˙C / b]˙ [˙A / a]˙ φ

Proof

Step Hyp Ref Expression
1 sbccomieg.1 a = A B = C
2 sbcex [˙A / a]˙ [˙B / b]˙ φ A V
3 spesbc [˙C / b]˙ [˙A / a]˙ φ b [˙A / a]˙ φ
4 sbcex [˙A / a]˙ φ A V
5 4 exlimiv b [˙A / a]˙ φ A V
6 3 5 syl [˙C / b]˙ [˙A / a]˙ φ A V
7 nfcv _ a C
8 nfsbc1v a [˙A / a]˙ φ
9 7 8 nfsbcw a [˙C / b]˙ [˙A / a]˙ φ
10 sbceq1a a = A φ [˙A / a]˙ φ
11 1 10 sbceqbid a = A [˙B / b]˙ φ [˙C / b]˙ [˙A / a]˙ φ
12 9 11 sbciegf A V [˙A / a]˙ [˙B / b]˙ φ [˙C / b]˙ [˙A / a]˙ φ
13 2 6 12 pm5.21nii [˙A / a]˙ [˙B / b]˙ φ [˙C / b]˙ [˙A / a]˙ φ