Metamath Proof Explorer


Theorem sbcexfi

Description: Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcexfi.1 _ y A
sbcexfi.2 [˙A / x]˙ φ ψ
Assertion sbcexfi [˙A / x]˙ y φ y ψ

Proof

Step Hyp Ref Expression
1 sbcexfi.1 _ y A
2 sbcexfi.2 [˙A / x]˙ φ ψ
3 1 sbcexf [˙A / x]˙ y φ y [˙A / x]˙ φ
4 2 exbii y [˙A / x]˙ φ y ψ
5 3 4 bitri [˙A / x]˙ y φ y ψ