Metamath Proof Explorer


Theorem sbcheg

Description: Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020)

Ref Expression
Assertion sbcheg AV[˙A/x]˙BhereditaryCA/xBhereditaryA/xC

Proof

Step Hyp Ref Expression
1 sbcssg AV[˙A/x]˙BCCA/xBCA/xC
2 csbima12 A/xBC=A/xBA/xC
3 2 a1i AVA/xBC=A/xBA/xC
4 3 sseq1d AVA/xBCA/xCA/xBA/xCA/xC
5 1 4 bitrd AV[˙A/x]˙BCCA/xBA/xCA/xC
6 df-he BhereditaryCBCC
7 6 sbcbii [˙A/x]˙BhereditaryC[˙A/x]˙BCC
8 df-he A/xBhereditaryA/xCA/xBA/xCA/xC
9 5 7 8 3bitr4g AV[˙A/x]˙BhereditaryCA/xBhereditaryA/xC