Metamath Proof Explorer


Theorem sbcie2s

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019) (Revised by SN, 2-Mar-2025)

Ref Expression
Hypotheses sbcie2s.a A=EW
sbcie2s.b B=FW
sbcie2s.1 a=Ab=Bφψ
Assertion sbcie2s w=W[˙Ew/a]˙[˙Fw/b]˙φψ

Proof

Step Hyp Ref Expression
1 sbcie2s.a A=EW
2 sbcie2s.b B=FW
3 sbcie2s.1 a=Ab=Bφψ
4 fvex EwV
5 fvex FwV
6 fveq2 w=WEw=EW
7 6 1 eqtr4di w=WEw=A
8 7 eqeq2d w=Wa=Ewa=A
9 8 biimpd w=Wa=Ewa=A
10 fveq2 w=WFw=FW
11 10 2 eqtr4di w=WFw=B
12 11 eqeq2d w=Wb=Fwb=B
13 12 biimpd w=Wb=Fwb=B
14 3 a1i w=Wa=Ab=Bφψ
15 9 13 14 syl2and w=Wa=Ewb=Fwφψ
16 4 5 15 sbc2iedv w=W[˙Ew/a]˙[˙Fw/b]˙φψ