Metamath Proof Explorer


Theorem sbcied

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbcied.1 φAV
sbcied.2 φx=Aψχ
Assertion sbcied φ[˙A/x]˙ψχ

Proof

Step Hyp Ref Expression
1 sbcied.1 φAV
2 sbcied.2 φx=Aψχ
3 df-sbc [˙A/x]˙ψAx|ψ
4 1 2 elabd3 φAx|ψχ
5 3 4 bitrid φ[˙A/x]˙ψχ