Metamath Proof Explorer


Theorem sbcim2g

Description: Distribution of class substitution over a left-nested implication. Similar to sbcimg . sbcim2g is sbcim2gVD without virtual deductions and was automatically derived from sbcim2gVD using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sbcim2g AV[˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ

Proof

Step Hyp Ref Expression
1 sbcimg AV[˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψχ
2 1 biimpd AV[˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψχ
3 sbcimg AV[˙A/x]˙ψχ[˙A/x]˙ψ[˙A/x]˙χ
4 imbi2 [˙A/x]˙ψχ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
5 4 biimpcd [˙A/x]˙φ[˙A/x]˙ψχ[˙A/x]˙ψχ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
6 2 3 5 syl6ci AV[˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
7 idd AV[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ
8 biimpr [˙A/x]˙ψχ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙ψχ
9 3 7 8 ee13 AV[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φ[˙A/x]˙ψχ
10 9 1 sylibrd AV[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ[˙A/x]˙φψχ
11 6 10 impbid AV[˙A/x]˙φψχ[˙A/x]˙φ[˙A/x]˙ψ[˙A/x]˙χ