Metamath Proof Explorer


Theorem sbhypfOLD

Description: Obsolete version of sbhypf as of 25-Jan-2025. (Contributed by Raph Levien, 10-Apr-2004) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses sbhypf.1 xψ
sbhypf.2 x=Aφψ
Assertion sbhypfOLD y=Ayxφψ

Proof

Step Hyp Ref Expression
1 sbhypf.1 xψ
2 sbhypf.2 x=Aφψ
3 eqeq1 x=yx=Ay=A
4 3 equsexvw xx=yx=Ay=A
5 nfs1v xyxφ
6 5 1 nfbi xyxφψ
7 sbequ12 x=yφyxφ
8 7 bicomd x=yyxφφ
9 8 2 sylan9bb x=yx=Ayxφψ
10 6 9 exlimi xx=yx=Ayxφψ
11 4 10 sylbir y=Ayxφψ