Metamath Proof Explorer


Theorem sbimi

Description: Distribute substitution over implication. (Contributed by NM, 25-Jun-1998) Revise df-sb . (Revised by BJ, 22-Dec-2020) (Proof shortened by Steven Nguyen, 24-Jul-2023)

Ref Expression
Hypothesis sbimi.1 φψ
Assertion sbimi txφtxψ

Proof

Step Hyp Ref Expression
1 sbimi.1 φψ
2 1 sbt txφψ
3 sbi1 txφψtxφtxψ
4 2 3 ax-mp txφtxψ