Metamath Proof Explorer


Theorem sbmo

Description: Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion sbmo yx*zφ*zyxφ

Proof

Step Hyp Ref Expression
1 sbex yxwzφz=wwyxzφz=w
2 nfv xz=w
3 2 sblim yxφz=wyxφz=w
4 3 sbalv yxzφz=wzyxφz=w
5 4 exbii wyxzφz=wwzyxφz=w
6 1 5 bitri yxwzφz=wwzyxφz=w
7 df-mo *zφwzφz=w
8 7 sbbii yx*zφyxwzφz=w
9 df-mo *zyxφwzyxφz=w
10 6 8 9 3bitr4i yx*zφ*zyxφ