| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbex |  |-  ( [ y / x ] E. w A. z ( ph -> z = w ) <-> E. w [ y / x ] A. z ( ph -> z = w ) ) | 
						
							| 2 |  | nfv |  |-  F/ x z = w | 
						
							| 3 | 2 | sblim |  |-  ( [ y / x ] ( ph -> z = w ) <-> ( [ y / x ] ph -> z = w ) ) | 
						
							| 4 | 3 | sbalv |  |-  ( [ y / x ] A. z ( ph -> z = w ) <-> A. z ( [ y / x ] ph -> z = w ) ) | 
						
							| 5 | 4 | exbii |  |-  ( E. w [ y / x ] A. z ( ph -> z = w ) <-> E. w A. z ( [ y / x ] ph -> z = w ) ) | 
						
							| 6 | 1 5 | bitri |  |-  ( [ y / x ] E. w A. z ( ph -> z = w ) <-> E. w A. z ( [ y / x ] ph -> z = w ) ) | 
						
							| 7 |  | df-mo |  |-  ( E* z ph <-> E. w A. z ( ph -> z = w ) ) | 
						
							| 8 | 7 | sbbii |  |-  ( [ y / x ] E* z ph <-> [ y / x ] E. w A. z ( ph -> z = w ) ) | 
						
							| 9 |  | df-mo |  |-  ( E* z [ y / x ] ph <-> E. w A. z ( [ y / x ] ph -> z = w ) ) | 
						
							| 10 | 6 8 9 | 3bitr4i |  |-  ( [ y / x ] E* z ph <-> E* z [ y / x ] ph ) |