| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbex |
⊢ ( [ 𝑦 / 𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∃ 𝑤 [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ) |
| 2 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 = 𝑤 |
| 3 |
2
|
sblim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝑧 = 𝑤 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 4 |
3
|
sbalv |
⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 5 |
4
|
exbii |
⊢ ( ∃ 𝑤 [ 𝑦 / 𝑥 ] ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 6 |
1 5
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 7 |
|
df-mo |
⊢ ( ∃* 𝑧 𝜑 ↔ ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ) |
| 8 |
7
|
sbbii |
⊢ ( [ 𝑦 / 𝑥 ] ∃* 𝑧 𝜑 ↔ [ 𝑦 / 𝑥 ] ∃ 𝑤 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑤 ) ) |
| 9 |
|
df-mo |
⊢ ( ∃* 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑤 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑧 = 𝑤 ) ) |
| 10 |
6 8 9
|
3bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] ∃* 𝑧 𝜑 ↔ ∃* 𝑧 [ 𝑦 / 𝑥 ] 𝜑 ) |