Metamath Proof Explorer


Theorem sbnf2

Description: Two ways of expressing " x is (effectively) not free in ph ". (Contributed by Gérard Lang, 14-Nov-2013) (Revised by Mario Carneiro, 6-Oct-2016) (Proof shortened by Wolf Lammen, 22-Sep-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Jan-2023)

Ref Expression
Assertion sbnf2 xφyzyxφzxφ

Proof

Step Hyp Ref Expression
1 nfv yφ
2 1 sb8ef xφyyxφ
3 sb8v xφzzxφ
4 2 3 imbi12i xφxφyyxφzzxφ
5 df-nf xφxφxφ
6 pm11.53v yzyxφzxφyyxφzzxφ
7 4 5 6 3bitr4i xφyzyxφzxφ
8 nfv zφ
9 8 sb8ef xφzzxφ
10 sb8v xφyyxφ
11 9 10 imbi12i xφxφzzxφyyxφ
12 pm11.53v zyzxφyxφzzxφyyxφ
13 11 5 12 3bitr4i xφzyzxφyxφ
14 alcom zyzxφyxφyzzxφyxφ
15 13 14 bitri xφyzzxφyxφ
16 7 15 anbi12i xφxφyzyxφzxφyzzxφyxφ
17 pm4.24 xφxφxφ
18 2albiim yzyxφzxφyzyxφzxφyzzxφyxφ
19 16 17 18 3bitr4i xφyzyxφzxφ