Metamath Proof Explorer


Theorem scafeq

Description: If the scalar multiplication operation is already a function, the functionalization of it is equal to the original operation. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses scaffval.b B=BaseW
scaffval.f F=ScalarW
scaffval.k K=BaseF
scaffval.a ˙=𝑠𝑓W
scaffval.s ·˙=W
Assertion scafeq ·˙FnK×B˙=·˙

Proof

Step Hyp Ref Expression
1 scaffval.b B=BaseW
2 scaffval.f F=ScalarW
3 scaffval.k K=BaseF
4 scaffval.a ˙=𝑠𝑓W
5 scaffval.s ·˙=W
6 1 2 3 4 5 scaffval ˙=xK,yBx·˙y
7 fnov ·˙FnK×B·˙=xK,yBx·˙y
8 7 biimpi ·˙FnK×B·˙=xK,yBx·˙y
9 6 8 eqtr4id ·˙FnK×B˙=·˙