Metamath Proof Explorer


Theorem scmatscmid

Description: A scalar matrix can be expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019) (Revised by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatval.k K=BaseR
scmatval.a A=NMatR
scmatval.b B=BaseA
scmatval.1 1˙=1A
scmatval.t ·˙=A
scmatval.s S=NScMatR
Assertion scmatscmid NFinRVMScKM=c·˙1˙

Proof

Step Hyp Ref Expression
1 scmatval.k K=BaseR
2 scmatval.a A=NMatR
3 scmatval.b B=BaseA
4 scmatval.1 1˙=1A
5 scmatval.t ·˙=A
6 scmatval.s S=NScMatR
7 1 2 3 4 5 6 scmatel NFinRVMSMBcKM=c·˙1˙
8 7 simplbda NFinRVMScKM=c·˙1˙
9 8 3impa NFinRVMScKM=c·˙1˙