Metamath Proof Explorer


Theorem sdomdomtr

Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of Suppes p. 97. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion sdomdomtr ABBCAC

Proof

Step Hyp Ref Expression
1 sdomdom ABAB
2 domtr ABBCAC
3 1 2 sylan ABBCAC
4 simpl ABBCAB
5 simpr ABBCBC
6 ensym ACCA
7 domentr BCCABA
8 5 6 7 syl2an ABBCACBA
9 domnsym BA¬AB
10 8 9 syl ABBCAC¬AB
11 10 ex ABBCAC¬AB
12 4 11 mt2d ABBC¬AC
13 brsdom ACAC¬AC
14 3 12 13 sylanbrc ABBCAC