Metamath Proof Explorer


Theorem sdrgunit

Description: A unit of a sub-division-ring is a nonzero element of the subring. (Contributed by SN, 19-Feb-2025)

Ref Expression
Hypotheses sdrgunit.s S=R𝑠A
sdrgunit.0 0˙=0R
sdrgunit.u U=UnitS
Assertion sdrgunit ASubDRingRXUXAX0˙

Proof

Step Hyp Ref Expression
1 sdrgunit.s S=R𝑠A
2 sdrgunit.0 0˙=0R
3 sdrgunit.u U=UnitS
4 1 sdrgdrng ASubDRingRSDivRing
5 eqid BaseS=BaseS
6 eqid 0S=0S
7 5 3 6 drngunit SDivRingXUXBaseSX0S
8 4 7 syl ASubDRingRXUXBaseSX0S
9 1 sdrgbas ASubDRingRA=BaseS
10 9 eleq2d ASubDRingRXAXBaseS
11 sdrgsubrg ASubDRingRASubRingR
12 1 2 subrg0 ASubRingR0˙=0S
13 11 12 syl ASubDRingR0˙=0S
14 13 neeq2d ASubDRingRX0˙X0S
15 10 14 anbi12d ASubDRingRXAX0˙XBaseSX0S
16 8 15 bitr4d ASubDRingRXUXAX0˙