Metamath Proof Explorer


Theorem seeq1

Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion seeq1 R=SRSeASSeA

Proof

Step Hyp Ref Expression
1 eqimss2 R=SSR
2 sess1 SRRSeASSeA
3 1 2 syl R=SRSeASSeA
4 eqimss R=SRS
5 sess1 RSSSeARSeA
6 4 5 syl R=SSSeARSeA
7 3 6 impbid R=SRSeASSeA