Metamath Proof Explorer


Theorem sepnsepolem1

Description: Lemma for sepnsepo . (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Assertion sepnsepolem1 xJyJφψχxJφyJψχ

Proof

Step Hyp Ref Expression
1 3anass φψχφψχ
2 1 2rexbii xJyJφψχxJyJφψχ
3 r19.42v yJφψχφyJψχ
4 3 rexbii xJyJφψχxJφyJψχ
5 2 4 bitri xJyJφψχxJφyJψχ