Metamath Proof Explorer


Theorem seqeq1

Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013)

Ref Expression
Assertion seqeq1 M=NseqM+˙F=seqN+˙F

Proof

Step Hyp Ref Expression
1 fveq2 M=NFM=FN
2 opeq12 M=NFM=FNMFM=NFN
3 1 2 mpdan M=NMFM=NFN
4 rdgeq2 MFM=NFNrecxV,yVx+1y+˙Fx+1MFM=recxV,yVx+1y+˙Fx+1NFN
5 3 4 syl M=NrecxV,yVx+1y+˙Fx+1MFM=recxV,yVx+1y+˙Fx+1NFN
6 5 imaeq1d M=NrecxV,yVx+1y+˙Fx+1MFMω=recxV,yVx+1y+˙Fx+1NFNω
7 df-seq seqM+˙F=recxV,yVx+1y+˙Fx+1MFMω
8 df-seq seqN+˙F=recxV,yVx+1y+˙Fx+1NFNω
9 6 7 8 3eqtr4g M=NseqM+˙F=seqN+˙F