Metamath Proof Explorer


Theorem seqomsuc

Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqom.a G=seqωFI
Assertion seqomsuc AωGsucA=AFGA

Proof

Step Hyp Ref Expression
1 seqom.a G=seqωFI
2 seqomlem0 recaω,bVsucaaFbII=reccω,dVsucccFdII
3 2 seqomlem4 Aωrecaω,bVsucaaFbIIωsucA=AFrecaω,bVsucaaFbIIωA
4 df-seqom seqωFI=recaω,bVsucaaFbIIω
5 1 4 eqtri G=recaω,bVsucaaFbIIω
6 5 fveq1i GsucA=recaω,bVsucaaFbIIωsucA
7 5 fveq1i GA=recaω,bVsucaaFbIIωA
8 7 oveq2i AFGA=AFrecaω,bVsucaaFbIIωA
9 3 6 8 3eqtr4g AωGsucA=AFGA