Metamath Proof Explorer


Theorem seqomlem4

Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Hypothesis seqomlem.a Q=reciω,vVsuciiFvII
Assertion seqomlem4 AωQωsucA=AFQωA

Proof

Step Hyp Ref Expression
1 seqomlem.a Q=reciω,vVsuciiFvII
2 peano2 AωsucAω
3 2 fvresd AωQωsucA=QsucA
4 frsuc Aωreciω,vVsuciiFvIIωsucA=iω,vVsuciiFvreciω,vVsuciiFvIIωA
5 2 fvresd Aωreciω,vVsuciiFvIIωsucA=reciω,vVsuciiFvIIsucA
6 1 fveq1i QsucA=reciω,vVsuciiFvIIsucA
7 5 6 eqtr4di Aωreciω,vVsuciiFvIIωsucA=QsucA
8 fvres Aωreciω,vVsuciiFvIIωA=reciω,vVsuciiFvIIA
9 1 fveq1i QA=reciω,vVsuciiFvIIA
10 8 9 eqtr4di Aωreciω,vVsuciiFvIIωA=QA
11 10 fveq2d Aωiω,vVsuciiFvreciω,vVsuciiFvIIωA=iω,vVsuciiFvQA
12 4 7 11 3eqtr3d AωQsucA=iω,vVsuciiFvQA
13 1 seqomlem1 AωQA=A2ndQA
14 13 fveq2d Aωiω,vVsuciiFvQA=iω,vVsuciiFvA2ndQA
15 df-ov Aiω,vVsuciiFv2ndQA=iω,vVsuciiFvA2ndQA
16 fvex 2ndQAV
17 suceq i=Asuci=sucA
18 oveq1 i=AiFv=AFv
19 17 18 opeq12d i=AsuciiFv=sucAAFv
20 oveq2 v=2ndQAAFv=AF2ndQA
21 20 opeq2d v=2ndQAsucAAFv=sucAAF2ndQA
22 eqid iω,vVsuciiFv=iω,vVsuciiFv
23 opex sucAAF2ndQAV
24 19 21 22 23 ovmpo Aω2ndQAVAiω,vVsuciiFv2ndQA=sucAAF2ndQA
25 16 24 mpan2 AωAiω,vVsuciiFv2ndQA=sucAAF2ndQA
26 fvres AωQωA=QA
27 26 13 eqtrd AωQωA=A2ndQA
28 frfnom reciω,vVsuciiFvIIωFnω
29 1 reseq1i Qω=reciω,vVsuciiFvIIω
30 29 fneq1i QωFnωreciω,vVsuciiFvIIωFnω
31 28 30 mpbir QωFnω
32 fnfvelrn QωFnωAωQωAranQω
33 31 32 mpan AωQωAranQω
34 27 33 eqeltrrd AωA2ndQAranQω
35 df-ima Qω=ranQω
36 34 35 eleqtrrdi AωA2ndQAQω
37 df-br AQω2ndQAA2ndQAQω
38 36 37 sylibr AωAQω2ndQA
39 1 seqomlem2 QωFnω
40 fnbrfvb QωFnωAωQωA=2ndQAAQω2ndQA
41 39 40 mpan AωQωA=2ndQAAQω2ndQA
42 38 41 mpbird AωQωA=2ndQA
43 42 eqcomd Aω2ndQA=QωA
44 43 oveq2d AωAF2ndQA=AFQωA
45 44 opeq2d AωsucAAF2ndQA=sucAAFQωA
46 25 45 eqtrd AωAiω,vVsuciiFv2ndQA=sucAAFQωA
47 15 46 eqtr3id Aωiω,vVsuciiFvA2ndQA=sucAAFQωA
48 12 14 47 3eqtrd AωQsucA=sucAAFQωA
49 3 48 eqtrd AωQωsucA=sucAAFQωA
50 fnfvelrn QωFnωsucAωQωsucAranQω
51 31 2 50 sylancr AωQωsucAranQω
52 49 51 eqeltrrd AωsucAAFQωAranQω
53 52 35 eleqtrrdi AωsucAAFQωAQω
54 df-br sucAQωAFQωAsucAAFQωAQω
55 53 54 sylibr AωsucAQωAFQωA
56 fnbrfvb QωFnωsucAωQωsucA=AFQωAsucAQωAFQωA
57 39 2 56 sylancr AωQωsucA=AFQωAsucAQωAFQωA
58 55 57 mpbird AωQωsucA=AFQωA