Metamath Proof Explorer


Theorem seqomlem4

Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Hypothesis seqomlem.a Q = rec i ω , v V suc i i F v I I
Assertion seqomlem4 A ω Q ω suc A = A F Q ω A

Proof

Step Hyp Ref Expression
1 seqomlem.a Q = rec i ω , v V suc i i F v I I
2 peano2 A ω suc A ω
3 2 fvresd A ω Q ω suc A = Q suc A
4 frsuc A ω rec i ω , v V suc i i F v I I ω suc A = i ω , v V suc i i F v rec i ω , v V suc i i F v I I ω A
5 2 fvresd A ω rec i ω , v V suc i i F v I I ω suc A = rec i ω , v V suc i i F v I I suc A
6 1 fveq1i Q suc A = rec i ω , v V suc i i F v I I suc A
7 5 6 eqtr4di A ω rec i ω , v V suc i i F v I I ω suc A = Q suc A
8 fvres A ω rec i ω , v V suc i i F v I I ω A = rec i ω , v V suc i i F v I I A
9 1 fveq1i Q A = rec i ω , v V suc i i F v I I A
10 8 9 eqtr4di A ω rec i ω , v V suc i i F v I I ω A = Q A
11 10 fveq2d A ω i ω , v V suc i i F v rec i ω , v V suc i i F v I I ω A = i ω , v V suc i i F v Q A
12 4 7 11 3eqtr3d A ω Q suc A = i ω , v V suc i i F v Q A
13 1 seqomlem1 A ω Q A = A 2 nd Q A
14 13 fveq2d A ω i ω , v V suc i i F v Q A = i ω , v V suc i i F v A 2 nd Q A
15 df-ov A i ω , v V suc i i F v 2 nd Q A = i ω , v V suc i i F v A 2 nd Q A
16 fvex 2 nd Q A V
17 suceq i = A suc i = suc A
18 oveq1 i = A i F v = A F v
19 17 18 opeq12d i = A suc i i F v = suc A A F v
20 oveq2 v = 2 nd Q A A F v = A F 2 nd Q A
21 20 opeq2d v = 2 nd Q A suc A A F v = suc A A F 2 nd Q A
22 eqid i ω , v V suc i i F v = i ω , v V suc i i F v
23 opex suc A A F 2 nd Q A V
24 19 21 22 23 ovmpo A ω 2 nd Q A V A i ω , v V suc i i F v 2 nd Q A = suc A A F 2 nd Q A
25 16 24 mpan2 A ω A i ω , v V suc i i F v 2 nd Q A = suc A A F 2 nd Q A
26 fvres A ω Q ω A = Q A
27 26 13 eqtrd A ω Q ω A = A 2 nd Q A
28 frfnom rec i ω , v V suc i i F v I I ω Fn ω
29 1 reseq1i Q ω = rec i ω , v V suc i i F v I I ω
30 29 fneq1i Q ω Fn ω rec i ω , v V suc i i F v I I ω Fn ω
31 28 30 mpbir Q ω Fn ω
32 fnfvelrn Q ω Fn ω A ω Q ω A ran Q ω
33 31 32 mpan A ω Q ω A ran Q ω
34 27 33 eqeltrrd A ω A 2 nd Q A ran Q ω
35 df-ima Q ω = ran Q ω
36 34 35 eleqtrrdi A ω A 2 nd Q A Q ω
37 df-br A Q ω 2 nd Q A A 2 nd Q A Q ω
38 36 37 sylibr A ω A Q ω 2 nd Q A
39 1 seqomlem2 Q ω Fn ω
40 fnbrfvb Q ω Fn ω A ω Q ω A = 2 nd Q A A Q ω 2 nd Q A
41 39 40 mpan A ω Q ω A = 2 nd Q A A Q ω 2 nd Q A
42 38 41 mpbird A ω Q ω A = 2 nd Q A
43 42 eqcomd A ω 2 nd Q A = Q ω A
44 43 oveq2d A ω A F 2 nd Q A = A F Q ω A
45 44 opeq2d A ω suc A A F 2 nd Q A = suc A A F Q ω A
46 25 45 eqtrd A ω A i ω , v V suc i i F v 2 nd Q A = suc A A F Q ω A
47 15 46 eqtr3id A ω i ω , v V suc i i F v A 2 nd Q A = suc A A F Q ω A
48 12 14 47 3eqtrd A ω Q suc A = suc A A F Q ω A
49 3 48 eqtrd A ω Q ω suc A = suc A A F Q ω A
50 fnfvelrn Q ω Fn ω suc A ω Q ω suc A ran Q ω
51 31 2 50 sylancr A ω Q ω suc A ran Q ω
52 49 51 eqeltrrd A ω suc A A F Q ω A ran Q ω
53 52 35 eleqtrrdi A ω suc A A F Q ω A Q ω
54 df-br suc A Q ω A F Q ω A suc A A F Q ω A Q ω
55 53 54 sylibr A ω suc A Q ω A F Q ω A
56 fnbrfvb Q ω Fn ω suc A ω Q ω suc A = A F Q ω A suc A Q ω A F Q ω A
57 39 2 56 sylancr A ω Q ω suc A = A F Q ω A suc A Q ω A F Q ω A
58 55 57 mpbird A ω Q ω suc A = A F Q ω A