Metamath Proof Explorer


Theorem setcbas

Description: Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses setcbas.c C=SetCatU
setcbas.u φUV
Assertion setcbas φU=BaseC

Proof

Step Hyp Ref Expression
1 setcbas.c C=SetCatU
2 setcbas.u φUV
3 catstr BasendxUHomndxxU,yUyxcompndxvU×U,zUgz2ndv,f2ndv1stvgfStruct115
4 baseid Base=SlotBasendx
5 snsstp1 BasendxUBasendxUHomndxxU,yUyxcompndxvU×U,zUgz2ndv,f2ndv1stvgf
6 3 4 5 strfv UVU=BaseBasendxUHomndxxU,yUyxcompndxvU×U,zUgz2ndv,f2ndv1stvgf
7 2 6 syl φU=BaseBasendxUHomndxxU,yUyxcompndxvU×U,zUgz2ndv,f2ndv1stvgf
8 eqidd φxU,yUyx=xU,yUyx
9 eqidd φvU×U,zUgz2ndv,f2ndv1stvgf=vU×U,zUgz2ndv,f2ndv1stvgf
10 1 2 8 9 setcval φC=BasendxUHomndxxU,yUyxcompndxvU×U,zUgz2ndv,f2ndv1stvgf
11 10 fveq2d φBaseC=BaseBasendxUHomndxxU,yUyxcompndxvU×U,zUgz2ndv,f2ndv1stvgf
12 7 11 eqtr4d φU=BaseC