Metamath Proof Explorer


Theorem setinds2regs

Description: Principle of set induction (or _E -induction). If a property passes from all elements of x to x itself, then it holds for all x . (Contributed by BTernaryTau, 31-Dec-2025)

Ref Expression
Hypotheses setinds2regs.1 x = y φ ψ
setinds2regs.2 y x ψ φ
Assertion setinds2regs φ

Proof

Step Hyp Ref Expression
1 setinds2regs.1 x = y φ ψ
2 setinds2regs.2 y x ψ φ
3 vex x V
4 1 cbvabv x | φ = y | ψ
5 setindregs x x y | ψ x y | ψ y | ψ = V
6 ssabral x y | ψ y x ψ
7 6 2 sylbi x y | ψ φ
8 4 eqabcri φ x y | ψ
9 7 8 sylib x y | ψ x y | ψ
10 5 9 mpg y | ψ = V
11 4 10 eqtri x | φ = V
12 11 eqabcri φ x V
13 3 12 mpbir φ