Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BTernaryTau
ZF set theory
Finitism
setinds2regs
Metamath Proof Explorer
Description: Principle of set induction (or _E -induction). If a property passes
from all elements of x to x itself, then it holds for all
x . (Contributed by BTernaryTau , 31-Dec-2025)
Ref
Expression
Hypotheses
setinds2regs.1
⊢ x = y → φ ↔ ψ
setinds2regs.2
⊢ ∀ y ∈ x ψ → φ
Assertion
setinds2regs
⊢ φ
Proof
Step
Hyp
Ref
Expression
1
setinds2regs.1
⊢ x = y → φ ↔ ψ
2
setinds2regs.2
⊢ ∀ y ∈ x ψ → φ
3
vex
⊢ x ∈ V
4
1
cbvabv
⊢ x | φ = y | ψ
5
setindregs
⊢ ∀ x x ⊆ y | ψ → x ∈ y | ψ → y | ψ = V
6
ssabral
⊢ x ⊆ y | ψ ↔ ∀ y ∈ x ψ
7
6 2
sylbi
⊢ x ⊆ y | ψ → φ
8
4
eqabcri
⊢ φ ↔ x ∈ y | ψ
9
7 8
sylib
⊢ x ⊆ y | ψ → x ∈ y | ψ
10
5 9
mpg
⊢ y | ψ = V
11
4 10
eqtri
⊢ x | φ = V
12
11
eqabcri
⊢ φ ↔ x ∈ V
13
3 12
mpbir
⊢ φ