Metamath Proof Explorer


Theorem setsabs

Description: Replacing the same components twice yields the same as the second setting only. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Assertion setsabs SVCWSsSetABsSetAC=SsSetAC

Proof

Step Hyp Ref Expression
1 setsres SVSsSetABVA=SVA
2 1 adantr SVCWSsSetABVA=SVA
3 2 uneq1d SVCWSsSetABVAAC=SVAAC
4 ovexd SVSsSetABV
5 setsval SsSetABVCWSsSetABsSetAC=SsSetABVAAC
6 4 5 sylan SVCWSsSetABsSetAC=SsSetABVAAC
7 setsval SVCWSsSetAC=SVAAC
8 3 6 7 3eqtr4d SVCWSsSetABsSetAC=SsSetAC