Metamath Proof Explorer


Theorem setscom

Description: Different components can be set in any order. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Hypotheses setscom.1 AV
setscom.2 BV
Assertion setscom SVABCWDXSsSetACsSetBD=SsSetBDsSetAC

Proof

Step Hyp Ref Expression
1 setscom.1 AV
2 setscom.2 BV
3 rescom SVAVB=SVBVA
4 3 uneq1i SVAVBAC=SVBVAAC
5 4 uneq1i SVAVBACBD=SVBVAACBD
6 un23 SVBVAACBD=SVBVABDAC
7 5 6 eqtri SVAVBACBD=SVBVABDAC
8 setsval SVCWSsSetAC=SVAAC
9 8 ad2ant2r SVABCWDXSsSetAC=SVAAC
10 9 reseq1d SVABCWDXSsSetACVB=SVAACVB
11 resundir SVAACVB=SVAVBACVB
12 elex CWCV
13 12 ad2antrl SVABCWDXCV
14 opelxpi AVCVACV×V
15 1 13 14 sylancr SVABCWDXACV×V
16 opex ACV
17 16 relsn RelACACV×V
18 15 17 sylibr SVABCWDXRelAC
19 dmsnopss domACA
20 disjsn2 ABAB=
21 20 ad2antlr SVABCWDXAB=
22 disj2 AB=AVB
23 21 22 sylib SVABCWDXAVB
24 19 23 sstrid SVABCWDXdomACVB
25 relssres RelACdomACVBACVB=AC
26 18 24 25 syl2anc SVABCWDXACVB=AC
27 26 uneq2d SVABCWDXSVAVBACVB=SVAVBAC
28 11 27 eqtrid SVABCWDXSVAACVB=SVAVBAC
29 10 28 eqtrd SVABCWDXSsSetACVB=SVAVBAC
30 29 uneq1d SVABCWDXSsSetACVBBD=SVAVBACBD
31 setsval SVDXSsSetBD=SVBBD
32 31 reseq1d SVDXSsSetBDVA=SVBBDVA
33 32 ad2ant2rl SVABCWDXSsSetBDVA=SVBBDVA
34 resundir SVBBDVA=SVBVABDVA
35 elex DXDV
36 35 ad2antll SVABCWDXDV
37 opelxpi BVDVBDV×V
38 2 36 37 sylancr SVABCWDXBDV×V
39 opex BDV
40 39 relsn RelBDBDV×V
41 38 40 sylibr SVABCWDXRelBD
42 dmsnopss domBDB
43 ssv AV
44 ssv BV
45 ssconb AVBVAVBBVA
46 43 44 45 mp2an AVBBVA
47 23 46 sylib SVABCWDXBVA
48 42 47 sstrid SVABCWDXdomBDVA
49 relssres RelBDdomBDVABDVA=BD
50 41 48 49 syl2anc SVABCWDXBDVA=BD
51 50 uneq2d SVABCWDXSVBVABDVA=SVBVABD
52 34 51 eqtrid SVABCWDXSVBBDVA=SVBVABD
53 33 52 eqtrd SVABCWDXSsSetBDVA=SVBVABD
54 53 uneq1d SVABCWDXSsSetBDVAAC=SVBVABDAC
55 7 30 54 3eqtr4a SVABCWDXSsSetACVBBD=SsSetBDVAAC
56 ovex SsSetACV
57 simprr SVABCWDXDX
58 setsval SsSetACVDXSsSetACsSetBD=SsSetACVBBD
59 56 57 58 sylancr SVABCWDXSsSetACsSetBD=SsSetACVBBD
60 ovex SsSetBDV
61 simprl SVABCWDXCW
62 setsval SsSetBDVCWSsSetBDsSetAC=SsSetBDVAAC
63 60 61 62 sylancr SVABCWDXSsSetBDsSetAC=SsSetBDVAAC
64 55 59 63 3eqtr4d SVABCWDXSsSetACsSetBD=SsSetBDsSetAC