Metamath Proof Explorer


Theorem setsidvaldOLD

Description: Obsolete version of setsidvald as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses setsidvaldOLD.e E=SlotN
setsidvaldOLD.n N
setsidvaldOLD.s φSV
setsidvaldOLD.f φFunS
setsidvaldOLD.d φEndxdomS
Assertion setsidvaldOLD φS=SsSetEndxES

Proof

Step Hyp Ref Expression
1 setsidvaldOLD.e E=SlotN
2 setsidvaldOLD.n N
3 setsidvaldOLD.s φSV
4 setsidvaldOLD.f φFunS
5 setsidvaldOLD.d φEndxdomS
6 fvex ESV
7 setsval SVESVSsSetEndxES=SVEndxEndxES
8 3 6 7 sylancl φSsSetEndxES=SVEndxEndxES
9 1 2 ndxid E=SlotEndx
10 9 3 strfvnd φES=SEndx
11 10 opeq2d φEndxES=EndxSEndx
12 11 sneqd φEndxES=EndxSEndx
13 12 uneq2d φSVEndxEndxES=SVEndxEndxSEndx
14 funresdfunsn FunSEndxdomSSVEndxEndxSEndx=S
15 4 5 14 syl2anc φSVEndxEndxSEndx=S
16 8 13 15 3eqtrrd φS=SsSetEndxES