Metamath Proof Explorer


Theorem setsidvaldOLD

Description: Obsolete version of setsidvald as of 17-Oct-2024. (Contributed by AV, 14-Mar-2020) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses setsidvaldOLD.e E = Slot N
setsidvaldOLD.n N
setsidvaldOLD.s φ S V
setsidvaldOLD.f φ Fun S
setsidvaldOLD.d φ E ndx dom S
Assertion setsidvaldOLD φ S = S sSet E ndx E S

Proof

Step Hyp Ref Expression
1 setsidvaldOLD.e E = Slot N
2 setsidvaldOLD.n N
3 setsidvaldOLD.s φ S V
4 setsidvaldOLD.f φ Fun S
5 setsidvaldOLD.d φ E ndx dom S
6 fvex E S V
7 setsval S V E S V S sSet E ndx E S = S V E ndx E ndx E S
8 3 6 7 sylancl φ S sSet E ndx E S = S V E ndx E ndx E S
9 1 2 ndxid E = Slot E ndx
10 9 3 strfvnd φ E S = S E ndx
11 10 opeq2d φ E ndx E S = E ndx S E ndx
12 11 sneqd φ E ndx E S = E ndx S E ndx
13 12 uneq2d φ S V E ndx E ndx E S = S V E ndx E ndx S E ndx
14 funresdfunsn Fun S E ndx dom S S V E ndx E ndx S E ndx = S
15 4 5 14 syl2anc φ S V E ndx E ndx S E ndx = S
16 8 13 15 3eqtrrd φ S = S sSet E ndx E S