Metamath Proof Explorer


Theorem setsn0fun

Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses setsn0fun.s φSStructX
setsn0fun.i φIU
setsn0fun.e φEW
Assertion setsn0fun φFunSsSetIE

Proof

Step Hyp Ref Expression
1 setsn0fun.s φSStructX
2 setsn0fun.i φIU
3 setsn0fun.e φEW
4 structn0fun SStructXFunS
5 structex SStructXSV
6 setsfun0 SVFunSIUEWFunSsSetIE
7 5 6 sylanl1 SStructXFunSIUEWFunSsSetIE
8 7 expcom IUEWSStructXFunSFunSsSetIE
9 2 3 8 syl2anc φSStructXFunSFunSsSetIE
10 9 com12 SStructXFunSφFunSsSetIE
11 4 10 mpdan SStructXφFunSsSetIE
12 1 11 mpcom φFunSsSetIE