Metamath Proof Explorer


Theorem setsn0fun

Description: The value of the structure replacement function (without the empty set) is a function if the structure (without the empty set) is a function. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses setsn0fun.s φ S Struct X
setsn0fun.i φ I U
setsn0fun.e φ E W
Assertion setsn0fun φ Fun S sSet I E

Proof

Step Hyp Ref Expression
1 setsn0fun.s φ S Struct X
2 setsn0fun.i φ I U
3 setsn0fun.e φ E W
4 structn0fun S Struct X Fun S
5 structex S Struct X S V
6 setsfun0 S V Fun S I U E W Fun S sSet I E
7 5 6 sylanl1 S Struct X Fun S I U E W Fun S sSet I E
8 7 expcom I U E W S Struct X Fun S Fun S sSet I E
9 2 3 8 syl2anc φ S Struct X Fun S Fun S sSet I E
10 9 com12 S Struct X Fun S φ Fun S sSet I E
11 4 10 mpdan S Struct X φ Fun S sSet I E
12 1 11 mpcom φ Fun S sSet I E