Metamath Proof Explorer


Theorem setsres

Description: The structure replacement function does not affect the value of S away from A . (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion setsres SVSsSetABVA=SVA

Proof

Step Hyp Ref Expression
1 opex ABV
2 setsvalg SVABVSsSetAB=SVdomABAB
3 1 2 mpan2 SVSsSetAB=SVdomABAB
4 3 reseq1d SVSsSetABVA=SVdomABABVA
5 resundir SVdomABABVA=SVdomABVAABVA
6 dmsnopss domABA
7 sscon domABAVAVdomAB
8 6 7 ax-mp VAVdomAB
9 resabs1 VAVdomABSVdomABVA=SVA
10 8 9 ax-mp SVdomABVA=SVA
11 dmres domABVA=VAdomAB
12 disj2 VAdomAB=VAVdomAB
13 8 12 mpbir VAdomAB=
14 11 13 eqtri domABVA=
15 relres RelABVA
16 reldm0 RelABVAABVA=domABVA=
17 15 16 ax-mp ABVA=domABVA=
18 14 17 mpbir ABVA=
19 10 18 uneq12i SVdomABVAABVA=SVA
20 un0 SVA=SVA
21 19 20 eqtri SVdomABVAABVA=SVA
22 5 21 eqtri SVdomABABVA=SVA
23 4 22 eqtrdi SVSsSetABVA=SVA