Metamath Proof Explorer


Theorem sge0clmpt

Description: The generalized sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0clmpt.xph x φ
sge0clmpt.a φ A V
sge0clmpt.b φ x A B 0 +∞
Assertion sge0clmpt φ sum^ x A B 0 +∞

Proof

Step Hyp Ref Expression
1 sge0clmpt.xph x φ
2 sge0clmpt.a φ A V
3 sge0clmpt.b φ x A B 0 +∞
4 eqid x A B = x A B
5 1 3 4 fmptdf φ x A B : A 0 +∞
6 2 5 sge0cl φ sum^ x A B 0 +∞