Metamath Proof Explorer


Theorem sge0xrclmpt

Description: The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0xrclmpt.xph x φ
sge0xrclmpt.a φ A V
sge0xrclmpt.b φ x A B 0 +∞
Assertion sge0xrclmpt φ sum^ x A B *

Proof

Step Hyp Ref Expression
1 sge0xrclmpt.xph x φ
2 sge0xrclmpt.a φ A V
3 sge0xrclmpt.b φ x A B 0 +∞
4 iccssxr 0 +∞ *
5 1 2 3 sge0clmpt φ sum^ x A B 0 +∞
6 4 5 sselid φ sum^ x A B *