Metamath Proof Explorer


Theorem sge0xrclmpt

Description: The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses sge0xrclmpt.xph xφ
sge0xrclmpt.a φAV
sge0xrclmpt.b φxAB0+∞
Assertion sge0xrclmpt φsum^xAB*

Proof

Step Hyp Ref Expression
1 sge0xrclmpt.xph xφ
2 sge0xrclmpt.a φAV
3 sge0xrclmpt.b φxAB0+∞
4 iccssxr 0+∞*
5 1 2 3 sge0clmpt φsum^xAB0+∞
6 4 5 sselid φsum^xAB*