Metamath Proof Explorer


Theorem shjcom

Description: Commutative law for Hilbert lattice join of subspaces. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion shjcom ASBSAB=BA

Proof

Step Hyp Ref Expression
1 shjval ASBSAB=AB
2 shjval BSASBA=BA
3 2 ancoms ASBSBA=BA
4 uncom BA=AB
5 4 fveq2i BA=AB
6 5 fveq2i BA=AB
7 3 6 eqtrdi ASBSBA=AB
8 1 7 eqtr4d ASBSAB=BA