Metamath Proof Explorer


Theorem shsva

Description: Vector sum belongs to subspace sum. (Contributed by NM, 15-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion shsva ASBSCADBC+DA+B

Proof

Step Hyp Ref Expression
1 eqid C+D=C+D
2 rspceov CADBC+D=C+DxAyBC+D=x+y
3 1 2 mp3an3 CADBxAyBC+D=x+y
4 shsel ASBSC+DA+BxAyBC+D=x+y
5 3 4 imbitrrid ASBSCADBC+DA+B