Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Integration
Bochner integral
sibfrn
Next ⟩
sibfima
Metamath Proof Explorer
Ascii
Unicode
Theorem
sibfrn
Description:
A simple function has finite range.
(Contributed by
Thierry Arnoux
, 19-Feb-2018)
Ref
Expression
Hypotheses
sitgval.b
⊢
B
=
Base
W
sitgval.j
⊢
J
=
TopOpen
⁡
W
sitgval.s
⊢
S
=
𝛔
⁡
J
sitgval.0
⊢
0
˙
=
0
W
sitgval.x
⊢
·
˙
=
⋅
W
sitgval.h
⊢
H
=
ℝHom
⁡
Scalar
⁡
W
sitgval.1
⊢
φ
→
W
∈
V
sitgval.2
⊢
φ
→
M
∈
⋃
ran
⁡
measures
sibfmbl.1
⊢
φ
→
F
∈
ℑ
M
W
Assertion
sibfrn
⊢
φ
→
ran
⁡
F
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
sitgval.b
⊢
B
=
Base
W
2
sitgval.j
⊢
J
=
TopOpen
⁡
W
3
sitgval.s
⊢
S
=
𝛔
⁡
J
4
sitgval.0
⊢
0
˙
=
0
W
5
sitgval.x
⊢
·
˙
=
⋅
W
6
sitgval.h
⊢
H
=
ℝHom
⁡
Scalar
⁡
W
7
sitgval.1
⊢
φ
→
W
∈
V
8
sitgval.2
⊢
φ
→
M
∈
⋃
ran
⁡
measures
9
sibfmbl.1
⊢
φ
→
F
∈
ℑ
M
W
10
1
2
3
4
5
6
7
8
issibf
⊢
φ
→
F
∈
ℑ
M
W
↔
F
∈
dom
⁡
M
MblFn
μ
S
∧
ran
⁡
F
∈
Fin
∧
∀
x
∈
ran
⁡
F
∖
0
˙
M
⁡
F
-1
x
∈
0
+∞
11
9
10
mpbid
⊢
φ
→
F
∈
dom
⁡
M
MblFn
μ
S
∧
ran
⁡
F
∈
Fin
∧
∀
x
∈
ran
⁡
F
∖
0
˙
M
⁡
F
-1
x
∈
0
+∞
12
11
simp2d
⊢
φ
→
ran
⁡
F
∈
Fin