Metamath Proof Explorer


Theorem sibfima

Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibfmbl.1 φ F M W
Assertion sibfima φ A ran F 0 ˙ M F -1 A 0 +∞

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibfmbl.1 φ F M W
10 1 2 3 4 5 6 7 8 issibf φ F M W F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
11 9 10 mpbid φ F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
12 11 simp3d φ x ran F 0 ˙ M F -1 x 0 +∞
13 sneq x = A x = A
14 13 imaeq2d x = A F -1 x = F -1 A
15 14 fveq2d x = A M F -1 x = M F -1 A
16 15 eleq1d x = A M F -1 x 0 +∞ M F -1 A 0 +∞
17 16 rspcv A ran F 0 ˙ x ran F 0 ˙ M F -1 x 0 +∞ M F -1 A 0 +∞
18 12 17 mpan9 φ A ran F 0 ˙ M F -1 A 0 +∞