| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|- B = ( Base ` W ) |
| 2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
| 4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
| 6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
| 7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
| 8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
| 9 |
|
sibfmbl.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 10 |
1 2 3 4 5 6 7 8
|
issibf |
|- ( ph -> ( F e. dom ( W sitg M ) <-> ( F e. ( dom M MblFnM S ) /\ ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
| 11 |
9 10
|
mpbid |
|- ( ph -> ( F e. ( dom M MblFnM S ) /\ ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) |
| 12 |
11
|
simp3d |
|- ( ph -> A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) |
| 13 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
| 14 |
13
|
imaeq2d |
|- ( x = A -> ( `' F " { x } ) = ( `' F " { A } ) ) |
| 15 |
14
|
fveq2d |
|- ( x = A -> ( M ` ( `' F " { x } ) ) = ( M ` ( `' F " { A } ) ) ) |
| 16 |
15
|
eleq1d |
|- ( x = A -> ( ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) <-> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) ) ) |
| 17 |
16
|
rspcv |
|- ( A e. ( ran F \ { .0. } ) -> ( A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) -> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) ) ) |
| 18 |
12 17
|
mpan9 |
|- ( ( ph /\ A e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) ) |