Metamath Proof Explorer


Theorem sibfima

Description: Any preimage of a singleton by a simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b
|- B = ( Base ` W )
sitgval.j
|- J = ( TopOpen ` W )
sitgval.s
|- S = ( sigaGen ` J )
sitgval.0
|- .0. = ( 0g ` W )
sitgval.x
|- .x. = ( .s ` W )
sitgval.h
|- H = ( RRHom ` ( Scalar ` W ) )
sitgval.1
|- ( ph -> W e. V )
sitgval.2
|- ( ph -> M e. U. ran measures )
sibfmbl.1
|- ( ph -> F e. dom ( W sitg M ) )
Assertion sibfima
|- ( ( ph /\ A e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 sitgval.b
 |-  B = ( Base ` W )
2 sitgval.j
 |-  J = ( TopOpen ` W )
3 sitgval.s
 |-  S = ( sigaGen ` J )
4 sitgval.0
 |-  .0. = ( 0g ` W )
5 sitgval.x
 |-  .x. = ( .s ` W )
6 sitgval.h
 |-  H = ( RRHom ` ( Scalar ` W ) )
7 sitgval.1
 |-  ( ph -> W e. V )
8 sitgval.2
 |-  ( ph -> M e. U. ran measures )
9 sibfmbl.1
 |-  ( ph -> F e. dom ( W sitg M ) )
10 1 2 3 4 5 6 7 8 issibf
 |-  ( ph -> ( F e. dom ( W sitg M ) <-> ( F e. ( dom M MblFnM S ) /\ ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) )
11 9 10 mpbid
 |-  ( ph -> ( F e. ( dom M MblFnM S ) /\ ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) )
12 11 simp3d
 |-  ( ph -> A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) )
13 sneq
 |-  ( x = A -> { x } = { A } )
14 13 imaeq2d
 |-  ( x = A -> ( `' F " { x } ) = ( `' F " { A } ) )
15 14 fveq2d
 |-  ( x = A -> ( M ` ( `' F " { x } ) ) = ( M ` ( `' F " { A } ) ) )
16 15 eleq1d
 |-  ( x = A -> ( ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) <-> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) ) )
17 16 rspcv
 |-  ( A e. ( ran F \ { .0. } ) -> ( A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) -> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) ) )
18 12 17 mpan9
 |-  ( ( ph /\ A e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { A } ) ) e. ( 0 [,) +oo ) )