Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|- B = ( Base ` W ) |
2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
9 |
|
sibfmbl.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
10 |
|
sibfinima.g |
|- ( ph -> G e. dom ( W sitg M ) ) |
11 |
|
sibfinima.w |
|- ( ph -> W e. TopSp ) |
12 |
|
sibfinima.j |
|- ( ph -> J e. Fre ) |
13 |
|
measbasedom |
|- ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) |
14 |
8 13
|
sylib |
|- ( ph -> M e. ( measures ` dom M ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> M e. ( measures ` dom M ) ) |
16 |
|
dmmeas |
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) |
17 |
8 16
|
syl |
|- ( ph -> dom M e. U. ran sigAlgebra ) |
18 |
17
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> dom M e. U. ran sigAlgebra ) |
19 |
12
|
sgsiga |
|- ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) |
20 |
3 19
|
eqeltrid |
|- ( ph -> S e. U. ran sigAlgebra ) |
21 |
20
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> S e. U. ran sigAlgebra ) |
22 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|- ( ph -> F e. ( dom M MblFnM S ) ) |
23 |
22
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> F e. ( dom M MblFnM S ) ) |
24 |
2
|
tpstop |
|- ( W e. TopSp -> J e. Top ) |
25 |
|
cldssbrsiga |
|- ( J e. Top -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) |
26 |
11 24 25
|
3syl |
|- ( ph -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) |
27 |
26 3
|
sseqtrrdi |
|- ( ph -> ( Clsd ` J ) C_ S ) |
28 |
27
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( Clsd ` J ) C_ S ) |
29 |
12
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> J e. Fre ) |
30 |
1 2 3 4 5 6 7 8 9
|
sibff |
|- ( ph -> F : U. dom M --> U. J ) |
31 |
30
|
frnd |
|- ( ph -> ran F C_ U. J ) |
32 |
31
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ran F C_ U. J ) |
33 |
|
simp2 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> X e. ran F ) |
34 |
32 33
|
sseldd |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> X e. U. J ) |
35 |
|
eqid |
|- U. J = U. J |
36 |
35
|
t1sncld |
|- ( ( J e. Fre /\ X e. U. J ) -> { X } e. ( Clsd ` J ) ) |
37 |
29 34 36
|
syl2anc |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { X } e. ( Clsd ` J ) ) |
38 |
28 37
|
sseldd |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { X } e. S ) |
39 |
18 21 23 38
|
mbfmcnvima |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( `' F " { X } ) e. dom M ) |
40 |
1 2 3 4 5 6 7 8 10
|
sibfmbl |
|- ( ph -> G e. ( dom M MblFnM S ) ) |
41 |
40
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> G e. ( dom M MblFnM S ) ) |
42 |
1 2 3 4 5 6 7 8 10
|
sibff |
|- ( ph -> G : U. dom M --> U. J ) |
43 |
42
|
frnd |
|- ( ph -> ran G C_ U. J ) |
44 |
43
|
3ad2ant1 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ran G C_ U. J ) |
45 |
|
simp3 |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> Y e. ran G ) |
46 |
44 45
|
sseldd |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> Y e. U. J ) |
47 |
35
|
t1sncld |
|- ( ( J e. Fre /\ Y e. U. J ) -> { Y } e. ( Clsd ` J ) ) |
48 |
29 46 47
|
syl2anc |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { Y } e. ( Clsd ` J ) ) |
49 |
28 48
|
sseldd |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { Y } e. S ) |
50 |
18 21 41 49
|
mbfmcnvima |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( `' G " { Y } ) e. dom M ) |
51 |
|
inelsiga |
|- ( ( dom M e. U. ran sigAlgebra /\ ( `' F " { X } ) e. dom M /\ ( `' G " { Y } ) e. dom M ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) |
52 |
18 39 50 51
|
syl3anc |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) |
53 |
|
measvxrge0 |
|- ( ( M e. ( measures ` dom M ) /\ ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) ) |
54 |
15 52 53
|
syl2anc |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) ) |
55 |
|
elxrge0 |
|- ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* /\ 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) ) |
56 |
55
|
simplbi |
|- ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) |
57 |
54 56
|
syl |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) |
58 |
57
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) |
59 |
|
0re |
|- 0 e. RR |
60 |
59
|
a1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> 0 e. RR ) |
61 |
55
|
simprbi |
|- ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) -> 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) |
62 |
54 61
|
syl |
|- ( ( ph /\ X e. ran F /\ Y e. ran G ) -> 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) |
63 |
62
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) |
64 |
57
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) |
65 |
15
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> M e. ( measures ` dom M ) ) |
66 |
39
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( `' F " { X } ) e. dom M ) |
67 |
|
measvxrge0 |
|- ( ( M e. ( measures ` dom M ) /\ ( `' F " { X } ) e. dom M ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) ) |
68 |
65 66 67
|
syl2anc |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) ) |
69 |
|
elxrge0 |
|- ( ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( `' F " { X } ) ) e. RR* /\ 0 <_ ( M ` ( `' F " { X } ) ) ) ) |
70 |
69
|
simplbi |
|- ( ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) -> ( M ` ( `' F " { X } ) ) e. RR* ) |
71 |
68 70
|
syl |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) e. RR* ) |
72 |
|
pnfxr |
|- +oo e. RR* |
73 |
72
|
a1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> +oo e. RR* ) |
74 |
52
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) |
75 |
|
inss1 |
|- ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' F " { X } ) |
76 |
75
|
a1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' F " { X } ) ) |
77 |
65 74 66 76
|
measssd |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) <_ ( M ` ( `' F " { X } ) ) ) |
78 |
|
simpl1 |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ph ) |
79 |
33
|
anim1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( X e. ran F /\ X =/= .0. ) ) |
80 |
|
eldifsn |
|- ( X e. ( ran F \ { .0. } ) <-> ( X e. ran F /\ X =/= .0. ) ) |
81 |
79 80
|
sylibr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> X e. ( ran F \ { .0. } ) ) |
82 |
1 2 3 4 5 6 7 8 9
|
sibfima |
|- ( ( ph /\ X e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) ) |
83 |
78 81 82
|
syl2anc |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) ) |
84 |
|
elico2 |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' F " { X } ) ) e. RR /\ 0 <_ ( M ` ( `' F " { X } ) ) /\ ( M ` ( `' F " { X } ) ) < +oo ) ) ) |
85 |
59 72 84
|
mp2an |
|- ( ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' F " { X } ) ) e. RR /\ 0 <_ ( M ` ( `' F " { X } ) ) /\ ( M ` ( `' F " { X } ) ) < +oo ) ) |
86 |
85
|
simp3bi |
|- ( ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) -> ( M ` ( `' F " { X } ) ) < +oo ) |
87 |
83 86
|
syl |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) < +oo ) |
88 |
64 71 73 77 87
|
xrlelttrd |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) |
89 |
57
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) |
90 |
15
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> M e. ( measures ` dom M ) ) |
91 |
50
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( `' G " { Y } ) e. dom M ) |
92 |
|
measvxrge0 |
|- ( ( M e. ( measures ` dom M ) /\ ( `' G " { Y } ) e. dom M ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) ) |
93 |
90 91 92
|
syl2anc |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) ) |
94 |
|
elxrge0 |
|- ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( `' G " { Y } ) ) e. RR* /\ 0 <_ ( M ` ( `' G " { Y } ) ) ) ) |
95 |
94
|
simplbi |
|- ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) -> ( M ` ( `' G " { Y } ) ) e. RR* ) |
96 |
93 95
|
syl |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) e. RR* ) |
97 |
72
|
a1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> +oo e. RR* ) |
98 |
52
|
adantr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) |
99 |
|
inss2 |
|- ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' G " { Y } ) |
100 |
99
|
a1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' G " { Y } ) ) |
101 |
90 98 91 100
|
measssd |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) <_ ( M ` ( `' G " { Y } ) ) ) |
102 |
|
simpl1 |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ph ) |
103 |
45
|
anim1i |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( Y e. ran G /\ Y =/= .0. ) ) |
104 |
|
eldifsn |
|- ( Y e. ( ran G \ { .0. } ) <-> ( Y e. ran G /\ Y =/= .0. ) ) |
105 |
103 104
|
sylibr |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> Y e. ( ran G \ { .0. } ) ) |
106 |
1 2 3 4 5 6 7 8 10
|
sibfima |
|- ( ( ph /\ Y e. ( ran G \ { .0. } ) ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) ) |
107 |
102 105 106
|
syl2anc |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) ) |
108 |
|
elico2 |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' G " { Y } ) ) e. RR /\ 0 <_ ( M ` ( `' G " { Y } ) ) /\ ( M ` ( `' G " { Y } ) ) < +oo ) ) ) |
109 |
59 72 108
|
mp2an |
|- ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' G " { Y } ) ) e. RR /\ 0 <_ ( M ` ( `' G " { Y } ) ) /\ ( M ` ( `' G " { Y } ) ) < +oo ) ) |
110 |
109
|
simp3bi |
|- ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) -> ( M ` ( `' G " { Y } ) ) < +oo ) |
111 |
107 110
|
syl |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) < +oo ) |
112 |
89 96 97 101 111
|
xrlelttrd |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) |
113 |
88 112
|
jaodan |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) |
114 |
|
xrre3 |
|- ( ( ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* /\ 0 e. RR ) /\ ( 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) /\ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR ) |
115 |
58 60 63 113 114
|
syl22anc |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR ) |
116 |
|
elico2 |
|- ( ( 0 e. RR /\ +oo e. RR* ) -> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR /\ 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) /\ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) ) ) |
117 |
59 72 116
|
mp2an |
|- ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR /\ 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) /\ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) ) |
118 |
115 63 113 117
|
syl3anbrc |
|- ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,) +oo ) ) |