| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 |  | sibfmbl.1 |  |-  ( ph -> F e. dom ( W sitg M ) ) | 
						
							| 10 |  | sibfinima.g |  |-  ( ph -> G e. dom ( W sitg M ) ) | 
						
							| 11 |  | sibfinima.w |  |-  ( ph -> W e. TopSp ) | 
						
							| 12 |  | sibfinima.j |  |-  ( ph -> J e. Fre ) | 
						
							| 13 |  | measbasedom |  |-  ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) | 
						
							| 14 | 8 13 | sylib |  |-  ( ph -> M e. ( measures ` dom M ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> M e. ( measures ` dom M ) ) | 
						
							| 16 |  | dmmeas |  |-  ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) | 
						
							| 17 | 8 16 | syl |  |-  ( ph -> dom M e. U. ran sigAlgebra ) | 
						
							| 18 | 17 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> dom M e. U. ran sigAlgebra ) | 
						
							| 19 | 12 | sgsiga |  |-  ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) | 
						
							| 20 | 3 19 | eqeltrid |  |-  ( ph -> S e. U. ran sigAlgebra ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> S e. U. ran sigAlgebra ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 | sibfmbl |  |-  ( ph -> F e. ( dom M MblFnM S ) ) | 
						
							| 23 | 22 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> F e. ( dom M MblFnM S ) ) | 
						
							| 24 | 2 | tpstop |  |-  ( W e. TopSp -> J e. Top ) | 
						
							| 25 |  | cldssbrsiga |  |-  ( J e. Top -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) | 
						
							| 26 | 11 24 25 | 3syl |  |-  ( ph -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) | 
						
							| 27 | 26 3 | sseqtrrdi |  |-  ( ph -> ( Clsd ` J ) C_ S ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( Clsd ` J ) C_ S ) | 
						
							| 29 | 12 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> J e. Fre ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 | sibff |  |-  ( ph -> F : U. dom M --> U. J ) | 
						
							| 31 | 30 | frnd |  |-  ( ph -> ran F C_ U. J ) | 
						
							| 32 | 31 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ran F C_ U. J ) | 
						
							| 33 |  | simp2 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> X e. ran F ) | 
						
							| 34 | 32 33 | sseldd |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> X e. U. J ) | 
						
							| 35 |  | eqid |  |-  U. J = U. J | 
						
							| 36 | 35 | t1sncld |  |-  ( ( J e. Fre /\ X e. U. J ) -> { X } e. ( Clsd ` J ) ) | 
						
							| 37 | 29 34 36 | syl2anc |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { X } e. ( Clsd ` J ) ) | 
						
							| 38 | 28 37 | sseldd |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { X } e. S ) | 
						
							| 39 | 18 21 23 38 | mbfmcnvima |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( `' F " { X } ) e. dom M ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 10 | sibfmbl |  |-  ( ph -> G e. ( dom M MblFnM S ) ) | 
						
							| 41 | 40 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> G e. ( dom M MblFnM S ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 10 | sibff |  |-  ( ph -> G : U. dom M --> U. J ) | 
						
							| 43 | 42 | frnd |  |-  ( ph -> ran G C_ U. J ) | 
						
							| 44 | 43 | 3ad2ant1 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ran G C_ U. J ) | 
						
							| 45 |  | simp3 |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> Y e. ran G ) | 
						
							| 46 | 44 45 | sseldd |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> Y e. U. J ) | 
						
							| 47 | 35 | t1sncld |  |-  ( ( J e. Fre /\ Y e. U. J ) -> { Y } e. ( Clsd ` J ) ) | 
						
							| 48 | 29 46 47 | syl2anc |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { Y } e. ( Clsd ` J ) ) | 
						
							| 49 | 28 48 | sseldd |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> { Y } e. S ) | 
						
							| 50 | 18 21 41 49 | mbfmcnvima |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( `' G " { Y } ) e. dom M ) | 
						
							| 51 |  | inelsiga |  |-  ( ( dom M e. U. ran sigAlgebra /\ ( `' F " { X } ) e. dom M /\ ( `' G " { Y } ) e. dom M ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) | 
						
							| 52 | 18 39 50 51 | syl3anc |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) | 
						
							| 53 |  | measvxrge0 |  |-  ( ( M e. ( measures ` dom M ) /\ ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 54 | 15 52 53 | syl2anc |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) ) | 
						
							| 55 |  | elxrge0 |  |-  ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* /\ 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) ) | 
						
							| 56 | 55 | simplbi |  |-  ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) | 
						
							| 57 | 54 56 | syl |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) | 
						
							| 59 |  | 0re |  |-  0 e. RR | 
						
							| 60 | 59 | a1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> 0 e. RR ) | 
						
							| 61 | 55 | simprbi |  |-  ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,] +oo ) -> 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) | 
						
							| 62 | 54 61 | syl |  |-  ( ( ph /\ X e. ran F /\ Y e. ran G ) -> 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) ) | 
						
							| 64 | 57 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) | 
						
							| 65 | 15 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> M e. ( measures ` dom M ) ) | 
						
							| 66 | 39 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( `' F " { X } ) e. dom M ) | 
						
							| 67 |  | measvxrge0 |  |-  ( ( M e. ( measures ` dom M ) /\ ( `' F " { X } ) e. dom M ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) ) | 
						
							| 68 | 65 66 67 | syl2anc |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) ) | 
						
							| 69 |  | elxrge0 |  |-  ( ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( `' F " { X } ) ) e. RR* /\ 0 <_ ( M ` ( `' F " { X } ) ) ) ) | 
						
							| 70 | 69 | simplbi |  |-  ( ( M ` ( `' F " { X } ) ) e. ( 0 [,] +oo ) -> ( M ` ( `' F " { X } ) ) e. RR* ) | 
						
							| 71 | 68 70 | syl |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) e. RR* ) | 
						
							| 72 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 73 | 72 | a1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> +oo e. RR* ) | 
						
							| 74 | 52 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) | 
						
							| 75 |  | inss1 |  |-  ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' F " { X } ) | 
						
							| 76 | 75 | a1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' F " { X } ) ) | 
						
							| 77 | 65 74 66 76 | measssd |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) <_ ( M ` ( `' F " { X } ) ) ) | 
						
							| 78 |  | simpl1 |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ph ) | 
						
							| 79 | 33 | anim1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( X e. ran F /\ X =/= .0. ) ) | 
						
							| 80 |  | eldifsn |  |-  ( X e. ( ran F \ { .0. } ) <-> ( X e. ran F /\ X =/= .0. ) ) | 
						
							| 81 | 79 80 | sylibr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> X e. ( ran F \ { .0. } ) ) | 
						
							| 82 | 1 2 3 4 5 6 7 8 9 | sibfima |  |-  ( ( ph /\ X e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 83 | 78 81 82 | syl2anc |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 84 |  | elico2 |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' F " { X } ) ) e. RR /\ 0 <_ ( M ` ( `' F " { X } ) ) /\ ( M ` ( `' F " { X } ) ) < +oo ) ) ) | 
						
							| 85 | 59 72 84 | mp2an |  |-  ( ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' F " { X } ) ) e. RR /\ 0 <_ ( M ` ( `' F " { X } ) ) /\ ( M ` ( `' F " { X } ) ) < +oo ) ) | 
						
							| 86 | 85 | simp3bi |  |-  ( ( M ` ( `' F " { X } ) ) e. ( 0 [,) +oo ) -> ( M ` ( `' F " { X } ) ) < +oo ) | 
						
							| 87 | 83 86 | syl |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( `' F " { X } ) ) < +oo ) | 
						
							| 88 | 64 71 73 77 87 | xrlelttrd |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ X =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) | 
						
							| 89 | 57 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* ) | 
						
							| 90 | 15 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> M e. ( measures ` dom M ) ) | 
						
							| 91 | 50 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( `' G " { Y } ) e. dom M ) | 
						
							| 92 |  | measvxrge0 |  |-  ( ( M e. ( measures ` dom M ) /\ ( `' G " { Y } ) e. dom M ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) ) | 
						
							| 93 | 90 91 92 | syl2anc |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) ) | 
						
							| 94 |  | elxrge0 |  |-  ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( `' G " { Y } ) ) e. RR* /\ 0 <_ ( M ` ( `' G " { Y } ) ) ) ) | 
						
							| 95 | 94 | simplbi |  |-  ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,] +oo ) -> ( M ` ( `' G " { Y } ) ) e. RR* ) | 
						
							| 96 | 93 95 | syl |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) e. RR* ) | 
						
							| 97 | 72 | a1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> +oo e. RR* ) | 
						
							| 98 | 52 | adantr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) e. dom M ) | 
						
							| 99 |  | inss2 |  |-  ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' G " { Y } ) | 
						
							| 100 | 99 | a1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) C_ ( `' G " { Y } ) ) | 
						
							| 101 | 90 98 91 100 | measssd |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) <_ ( M ` ( `' G " { Y } ) ) ) | 
						
							| 102 |  | simpl1 |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ph ) | 
						
							| 103 | 45 | anim1i |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( Y e. ran G /\ Y =/= .0. ) ) | 
						
							| 104 |  | eldifsn |  |-  ( Y e. ( ran G \ { .0. } ) <-> ( Y e. ran G /\ Y =/= .0. ) ) | 
						
							| 105 | 103 104 | sylibr |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> Y e. ( ran G \ { .0. } ) ) | 
						
							| 106 | 1 2 3 4 5 6 7 8 10 | sibfima |  |-  ( ( ph /\ Y e. ( ran G \ { .0. } ) ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 107 | 102 105 106 | syl2anc |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 108 |  | elico2 |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' G " { Y } ) ) e. RR /\ 0 <_ ( M ` ( `' G " { Y } ) ) /\ ( M ` ( `' G " { Y } ) ) < +oo ) ) ) | 
						
							| 109 | 59 72 108 | mp2an |  |-  ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' G " { Y } ) ) e. RR /\ 0 <_ ( M ` ( `' G " { Y } ) ) /\ ( M ` ( `' G " { Y } ) ) < +oo ) ) | 
						
							| 110 | 109 | simp3bi |  |-  ( ( M ` ( `' G " { Y } ) ) e. ( 0 [,) +oo ) -> ( M ` ( `' G " { Y } ) ) < +oo ) | 
						
							| 111 | 107 110 | syl |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( `' G " { Y } ) ) < +oo ) | 
						
							| 112 | 89 96 97 101 111 | xrlelttrd |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ Y =/= .0. ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) | 
						
							| 113 | 88 112 | jaodan |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) | 
						
							| 114 |  | xrre3 |  |-  ( ( ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR* /\ 0 e. RR ) /\ ( 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) /\ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR ) | 
						
							| 115 | 58 60 63 113 114 | syl22anc |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR ) | 
						
							| 116 |  | elico2 |  |-  ( ( 0 e. RR /\ +oo e. RR* ) -> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR /\ 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) /\ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) ) ) | 
						
							| 117 | 59 72 116 | mp2an |  |-  ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. RR /\ 0 <_ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) /\ ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) < +oo ) ) | 
						
							| 118 | 115 63 113 117 | syl3anbrc |  |-  ( ( ( ph /\ X e. ran F /\ Y e. ran G ) /\ ( X =/= .0. \/ Y =/= .0. ) ) -> ( M ` ( ( `' F " { X } ) i^i ( `' G " { Y } ) ) ) e. ( 0 [,) +oo ) ) |